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METHOD OF SPIZT RIGIDITIES AND ITS APPLICATION TO

VARIOUS BU~ PROBLEMS

A comprehendive treatise
sented. First the principles

P. P. Bijlasrd

SUMMARY

on the method of split rigidities is pre-
upon which the method is based sre discussed.

It is shown on new examples how these principles are applied. These
applications sxe divided into problems where all component modes into
which the actual behavior of a Gomposite structure is split have the
ssme boundary conditions and into those where these boundary conditions
differ. Examples of the first type include sandwich columns tith various
boundary conditions, columns with batten plates, and latticed columns;
exsmples of elastic and plastic buckling of sandwich plates with ortho-
tropic core and of corrugated-core sandwich plates are also given. This
type includes problems based on the same principles where only one mode
has to be considered. As an example, the buckling stress of homogeneous

4 plates under nonhomogeneous stresses in the@ plane is expressed in terms
of their critical stress under homogeneous compression. TO this grOUp

A also belongs the determination of the ultimate load of plates under
compression. An -licit formula is derived for the buckling stress of
stringer psmels which is a new example of the second type of problem.
The problems were chosen so that the correctness of the method, which
is basically an approximate one, canbe shownby comparison with exact
calculations or tests.

INTRODUCTION

In several papers a method has been used for calculating the buckling
stresses of structures that buckle in coqosite modes which is called the
“method of split rigidities.’* The method consists of splitting the
buckling deflection into two or more component modes and expressing the
buckling stress in terms of the critical loads for these coqonent modes.
References 1 to 19 are based partly or completely on this method.

* For example, in a sandwich plate (refs. 5, 9, 11, 12, and 14) there
are three different buckling modes: (1) That of the single faces,

.
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(2) that of the complete sandwich pbte, assuming the faces to have zero
flexural rigitity but assum3.ngthe core to have infinite shear rigidity,
and (3) that of the complete sandwich platej assuming the faces to have

.

zero flexural rigidity and assuming the faces to be infinitely rigid
against extension. In the case of a T-section (ref. 13) the thee modes
are: (1) Bending about the Y-axis situated in the plane of the web,
(2) twisting about the sheer center axis, and (3) plate buckling. In
the case of buckling by general instability of a long cylindrical shell

—

tith stiffening rings under external pressure (ret. 19) the component
modes are buckling as an orthotropic shell~ assuming the rigidity of the
rings to be uniformly distributed along the length of the shell, and
buckling of the shell betwee~ the rings. In the case of stringer panels
(ref. I-8)practically exact solutions are obtained ~y this method for
conventional panel buckling as well as for forced crippling (refs. 16,
18, and20).

Formulas for buckling loads or stresses have been derived in earlier
papers and new ones will be presented herein by establishing equations
between external and internal actions. In references 1, 2, 3, and 6 the
external atidinternal actions considered were the external and internal
bending moments. In references 7 and 13 bending as well as torsional
moments were considered. Bending moments in a cross section as well as
deflecting and restraining transverse forces acting on an element were
considered in references 4, 9, 11, 13, mcl I-6. The actions and reactions
considered in references 14, 15, 17, and 19 were the amounts of work done
by deflecting and restraining forces. Columns and plates with initial
deflections were considered in a footnote of reference 1 and in

““ “i!

reference 15.
._-
<“
s

The method of split rigidities was also applied in the postbuckling
range (refs. 13 ad 17). It is very powerful.and leads to stile results
in cases where a solution by existing methods is practically impossible.
It was successfully used in two other projects (refs. 13 and 17). Until
the present only a few other investigators have used this method (refs. 21,
22, and 23) probably because no general comprehensive treatise on it has
yet been made avaiMble. Therefore the purpose of the present report is
to give such a general explanation, with examples of the”rnethodof appli-
cation in various special cases.

The present investigation was carried out at Cornell University
under the sponsorship and with the financial assistance of the National
Advisory Committee for Aeronautics. The e.xmples dealing with the
ultimate load of plates under compression and with buckling of stringer
panels are part of earlier work done for the Bell Aircraft Corporation.
The author tishes to express his a~reciation for the valuable coopera-
tion of all concerned md to the BeXL Aircraft Corporation for its per-
mission to publish the abovementioned examples.
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total cross section of column

plastic reduction coefficients

cross section of diagonal

cross section of stiffener

cross section of vertical

for pl&stic buckling of plates

half wave length of buckling for plate

width of plate; also, width of hay of stringer panel

effective width of plate

constant; also spring constant (foundation modulm)

center-to-center spacing of batten plates in built-up column;
also, free length of single struts in latticed column

effective free length of single stiuts between batten phtes

deflecting force

ratios of shear

elastic modulus

elastic modulus

elastic modulus

to shear @e

of corrugation

of faces (skin) in sandwich _platejalso,
secant nmdulus in section “Ultimate Ioad of Plates Under
Compression”

tangent

tangent

modulus

modulus

modulus of corrugation

of rigidity of sandwich core



4 NACA TN 4085
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Gx)Gy moduli of rigidity in X- and Y-directions of sandwich core

E total thickness of sandwich column or sandwich plate, t + 2h
.

h center-to-center distance of single struts of built-up column;
also, thickness.of single face of ss.udwichcolumn or sandwich
plate

I moment of inertia

Ic moment of inertia of single strut.of built-up column

If moment of inertia of single face of sandwich plate

L? moment of inertia of reduced built--upcolumn, M12/4

Is moment of inertia of reduced sandwich column or sandwich —

plate, (1/2)h(t+ h)2

K constant

k buckling stress coefficient definedby equation (142)

~,kljk2 buckling stress coefficients referring to cases O, 1, and 2,
respectively

ks buckling stress coefficient definedby equation (145)

kb,~,. . . coefficients in equation (104)

II effective length of column

z length of colurm; also, length of stringer panel

Zr/r effective slenderness ratio for reduced case of built-up
column

‘eq~ effective slenderness ratio of built-up column

A

M moment

‘+ bending moments

Mw) Mw torsional moments
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S,SII,SIV

t
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v

w

flexural rigidity of homogeneous plate; also, flexural rigidity
of face of sandwich plate

flexural rigidity of reduced sandtich plate, given by
equation (59)

mxiber of bays

buckling load

of stringer panel

coefficients in equations (108) and (203)

she= force; also, transverse shear force in plate

trsmsverse shear force that would cause a unit angular
distortion in latticed column

restraining force

radius of ~ation of reduced built-up Colummj h/2;
r ~ if rx=ry=rx=r

radius of ~ation of single strut of built-up column

ratios defined by equations (78) and (81)

ratios defined by equations (W) and (123)

spring

quarter spring constants for plates

core thickness of sandwich column or sandwich plate; also,
thickness of homogeneous plate

normal fiction

translation of single struts per unit shear force in
batten plates

deflection
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coordinates

directions

function of y only

angle .-

coefficients defined by equation (A6)

coefficient in equation (102)

factor in equation (35)

aspect ratio of buckle in

angular distortion; also,

elongation

strain

membrane strain

buckled plate, a/b

ratio ‘definedby eqyation (221)

value <<I in equation (228)

reduction factor for plasticity for
plates

reduction factor for plasticity for

angle; e = ex = ‘Y H ‘x=eY

ratios definedby equation (73)

ratio defined by equation (226) for

ratio definedby equation (95,)

concentric buckling of

-.

finite deflection of plates

stringer parlel

n-.

Poisson’s ratio

slope of column

normal stress

in case 2 of latticed column

.

.
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‘e normal stress at edge

‘m membrane normal stress

az normal stress in plane parallel to middle plane of sandwich
plate

T coefficient in equations (151) and (154)

Q(x,y) function of x and y

9 ratio defined by equation (21.1)

@ defined by equation (212)

n ratio defined by equation (225) for stringer panels

Subscripts:

a

b

cr

e

-w-
*.

eq

h

i

m

mid

P

r

s

St
.

u

.
l.llt

actual (fig. 10(b))

bending

critical

external

equivalent

homogeneous

internal

maximum

center (middle)

postbuckl.~j also, refers to fictitious end deflections as
shown in figure 10(b)

reduced case

skin (face) for sdndwich plate; also, secant in section
“Ultimate Load of Plates Under Compression”

stiffener

uniform
.

ultimate

r
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x,y refer to X- and Y-directions, respectively; also, refer to X-
and Y-strips, respectively, for orthotropic sandwich plate

ys yield stress

0,1,2,...n refer to cases O, 1, 2, . . . n, respectively

be

DESCRIPTION OF MZ’I!EOD

The method of split rigidities as applied to buckling problems may
described as follows:

.

.

(1) Splitting into two or more component cases: The elastic or
elastoplastic behavior.of a composite structure is split into two or
more component cases for which the individual buckling stresses can be
easily determined. For example, the deflection w of a sandwich plate
with membrane faces is split into its deflections

‘1 from bending alone

(case 1) and W2 from shear deformation alone (case 2). It is assumed

that in the composite structure the component buckling deflections WI

and W2 have the same shape as in cases 1 and 2 where they occur alone.
The accuracy of the method will be greater the better this assumption
is fub?illed. If it is exactly fulfilled, which as explained in this
report is only possible if WI and W2 have the same shape, the method b.
@ exact.

,“
~..

(2) External actions and internal reactions: With the shapes of
*

the component deflections for the conibinedcase thus determined, it is
always possible to establish equations between the external actions and
the internal reactions. These actions and reactions may be the external
and internal moments acting in a cross section, the deflecting ayd
restraining forces acting upon a small elemegt, or the work done by
deflecting and restraining forces. —

(3) Werml action: If the actual combined case is split into two
or more, say n, component cases with deflections Wl, W2> 3w) m . ● Wn,

the external action is proportional to the actual buckling load Pm for

the combined case and maybe expressed in terms of Per and the indi-

vidual deflections w , w , w , . . . Wn.123 For example, splitting the.

deflection w of a sandwich column with membrane faces into the deflec-
tion WI from bending and the deflection W2. from shear deformation,
the external moment Me for the combined case is equal to Pcr (Wl + J@. -

.
●
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(4) Internal action: As stated
case with a deflection w = wl + w2j

9

under item (1), in the conibined
the component deflections W1 and

W2 are assumed to have the seineshapes as in the seperate cases 1 and 2

with buckling loads P1 end P2. The internal reactions depend only on

the shape of the deflection and not on the magnitude of the compressive
force. Therefore, the internal reactions in the conibinedcase ere eq,,l
to those in case 1 alone since additional deformations (case 2) increase
the deflections,but not the internal reactions. In the ssme way it
follows that the internal reactions sre equal to those frcm case 2. For
example, in a sandwich colm with membrane faces, the deflection W2

from shear deformation increases the deflection beyond wl from bending,

but it does not increase the internal nxxnentfrom Wl, and vice versa,

as shown extensively in reference 11.

As will be explained later, the rigidities of the structure against
the partial deflections WI and W2 canbe considerd to be supplied

by sets of springs S1 and S2 with different spring constants cl
and C2 acting in series to restrain the deflection of a column without

~prqer flexural rigidity (fig. 1). Eence it is obvious that the
internal reaction for the conibinedcase, that is, of the cdbined springs,
is equal to that of the separate springs s~ or s~.

(5) Problems where component cases are coupled: The statements
under item (4) are true only if the deformations for cases 1 and 2 can
occur independently without restraining each other, such as the bending
and shear deformation of a sandwich column with metirane faces. If this
is not so, for example, if the faces have their own proper fl.exural
rigidity, the internal action is increased above that from case 1 or
case 2 alone. This can be tsken into account in several ~s. If the
coupling occurs externally by a third agency, such as in the above exemple,
this coupling case (case O) can be first i~~edj that is, the proper
flexural rigidity of the faces is assumed to be !zero. Finally the axial
restraint offered by this coupling rigidity is added to the buckling load
of the rermining system. This was done, for exsmple, in reference 11.
If cases 1 and 2 themselves sre coupled, that is, if they are coupled
internally (so that a deformation from case 2 adds to the internal
reaction from case 1 and vice versa) as occurs, for exemple, in refer-
ence 13, the extra restraint offered by case 2 is simply added to the
internal action from case 1 and vice versa. Also a cofiination of these
methods = be used.

(6) Expression of titernal actions and hence of buckling load in
terms of buckling loads for component cases: The internal action for
case 1 due to a deflection wl is eqqal to the external action for that

case, if it occurs separately, which is proportional to the buckling
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load’ P1 for that case

For example, for case 1
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.

and can be expressed in terms of P1 and W1.

of the sandwich column considered in the section .

“Introduction,” the internal moment %1 from case 1 is eqpal to the

external moment Plwl. According to item (4) this is also the internal

moment Mi for the combined case. Hence from item (3) the equation of

external and internal moment for the combined case leads to the equa-
tion Pcr

(W1+W2) ‘PIW1* Similarly, the internal moment for the com-

bined case is equal to that for case 2, which is again equal to the
external moment for that case, giving Mi = P2W2. Equating this internal

moment to the external moment gives pcr(wl+ w2) = p2w2” E~tion
of WI and W2 gives Pcr in terms of Pl and P2. If the component

cases are coupled and the latter method under item (5) is used, as will
usually be done in problems where cases 1 and 2 have different boundary
conditions, the internal action will contain both psrtial deflections

‘1
amd W2. Further, in such ptiohlemsthe external action is usually

expressed as ‘cr(wl + ~2) or Pm(w2 + 7W1) where T and 7 differ

from 1, so that after elimination of ‘1
and W2 a more complicated

formula for Pcr in terms of PI and P2 results than for problems

where cases 1 and 2 have the same boun~y conditions.

If splitting into three different cases is necesssry the same method P
is used, equting the external actions to the internal reactions due to
cases 1, 2} and 31 respectively. This leads to three homogeneous :inear \-

equations in wl~ W2, and W5. Only when cases 1, 2, and 3 have the ?

same boun~ conditions and &e not coupled or are coupled by a fourth
restraint that can be split off} as mentioned in the firs% case in
item (5), does this lead to s~le formulas for Pm as expressed in

terms of PI, P2j and P3, such as those for composite columns coupled

by elastic couplings with equal spacings (ref. 6). In other problems
this method leads to a cubic eqpation for the buckling load Per. How-

ever, by combining the first two cases and then combining them with the
third case (in ref. 13 such a case is presented, namely, the buckling
of columns witliT-sections), rather siqple end formulas could be obtained
containing sqgare roots only.

(7) Accuracy of method: The method leads to exact results when the
deflections Wn have the same shape, but sufficiently accurate results

can be obtained if they differ in shape, as will be shown in this report.

As shown in reference 14, if Wlj W2Z . . . Wn Uffer ~ shapej

the method remains exact if PI, P2, . . . Pn sxe considered as the
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buckling loads

cases, as they

belonging to

occur in the

IL

the shapes of W1 sad W2 in the component

ccmibinedcase. Since, in general, these
are not the optimum shapes that lead to the min& bu~kling loads P1

and P2 as they occur in sepsrate cases 1 and 2, by considering PI

and P2 as the minimum buckling loads conservative results will be

obtained. However, if the structure is externally redundant, such as
in the case of sandwich plates, there is another influence that may tend
to make the method mconservative. This is the fact that in the composite
case the boundary and continuity conditions have to be satisfied by the
total deflection w ordy and not by the component deflections
Wlj W2Y . . ● Wn separately. This causes a relaxation of restraints

.
that tends to tie Pl and P2 smaller for the composite case than for

the sepsrate cases and thus to make the result uncon.servative. Hence in
such a case the method m.y slightly overest~te the buckling load Pa

for the coribinedcase.

(8) Problems where buckling deflection in one i.ndividuslcase is
arbitrary: Let the case in which the bucklhg deflection is sr?bitrary
be case 2. Then in the composite case the deflection W2 for that case ,

s
;

will have the same shape as wl for case-l. This maybe understood as
follows: If during the deformation for case 2 the shape of wl and

hence the internal reaction for case 1 does not change, the internal
reaction for the combined case will also be determined by the shape of
wl (from items (4) and (6)). Hence, in order to tie the external
action eqml the internal one at each point, the total deflec-

:

tion WI + w2~ and therefore W2j ~st also have the same shape as W1*

In some cases, such as that of a sandwich column with asymmetric boundsry
conditions which will be considered in this report, the shape of wl for

the combined case will differ from that for the individual case 1. How-
ever, also then, in order to obtain eqti external and internal moments, in
the combined case W2 will have the same shape as Wl> but the shapes of

WI and W2 will differ from that of WI in the separate case 1. Exact

results can be obtained by calculating P1 ~d P2 for the bu~li~

deflections as they occur in the composite case.

(9) COIMS or plates with initial deflections: The method may also
be applied to columns or plates with initial deflections. Here one of
the cases is the initial deflection with an individual buckling load
equal to zero (refs. 1 and 15).

(10) Reduction to case of columns or plates on elastic foundation:
In several problems it is convenient to reduce the restraint offered in
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.
the component cases to that given by an equivalent elastic foundation.
The structure then can be considered to be without any flexural or
shearing rigidity but to be laterally supported by springs arranged in .

series with as msmy component springs as the number of cases into which
its behavior is split. For”example, if there are two cases, the springs
consist of individual

PROBLEMS WHERE ALL

If all component

springs S1 and S2 (fig. 1).

C@Il?ONENTCASES HAVE SAME 10JNDARY CONDITIONS

General Formulas

cases have the same boundary conditions the
resulting formula expressing the critic~ 10ad h terms of the critical
loads of the separate cases usually acquires the general form

P
(

-1 -l+P-l
)
-1

cr =Po+Pr=Po+ P~ + P2 3 +... (1)’

where Pl, P2j . . . Pn) are the critical loads of the separate cases

and P. is the critical load that is due to the rigidity from the coupling

case. For example, for a sandwich plate P. is the critical load from

the proper flexural rigidity of the faces alone. Of course, this does R
not apply if only one mode is considered, such as in the case of homo-
geneous plates under nonhomogeneous stress distributiw and that of the
ultimate load of compressed plates, which is dealt with subsequently.

.

For plates where the rigidities in the X- and Y-directions differ
a great deal, such as corrugated-core sandwich plates, it is yossible
and often necessary to allow for ratios ‘2pl- of the component deflec-

tions which differ for the imaginery strips running in the X- and
Y-directions of which the sandwich plate can be thought to.be composed.
This leads to a formula of the form

P
(

cr=Po + Pr=Po + P#+ Pa-l +..0
)(
-l+p -l+p -1

)

-1
W2Y+”””

(2)

Here the subscripts x and y refer to the buckling loads of the plate
due to the rigidity of the X- and Y-strips, respectively, also taking
account of the influence of the torsional moments acting on those strips.

.

.



NACA m 4085 13

.

This formula leads to accurate results for orthotropic sandwich plates
and also to more accurate results than equation.(l) for isotropic sand-

. with plates with ~fferent boundsry conditions in the X- and Y-directions,
such as long plates that sre clamped at the unloaded edges.

Discussion and Deri.vationof I@ation (1)

Equation (1), where in some cases PO is zerb, was derived in refer-

ences 3, 4, 6, and 11 for columns as well as for plates by applying
items (I) to (6) ad (8). h the case of columns the actions and reac-
tions considered were the external and internal moments, and in the case
of plates the transverse deflecting and restraining forces acting upon
an element were compared. As stated in reference 1.1,this fornd.a leads
to accurate results if Wl, W2, . . . Wn and w have the ssme shape.

However, even if WI, W2, . . . Wn and w sme of different shapes

sufficiently =.curate results sxe obtatied. In reference 14 the same
formula was derived for the case in which WI and W2 sre different in

shape by comparing the work done by deflecting and restraining forces.
It was found that equation (1) is act if in the ccmibtiedcase wl
and W2 have the same shape as they have in the component cases 1 and 2.

But this is obviously so only if, in both the component and the ccxibined
cases, wl~= w2j and w all have the sane shape, since then, from

items (3), (4), and (6), in the conibinedcase the distribution of the
deflecting and restraining forces will be similar. That is, if in the

. cabined case the restraining forces from case 1 are given by P1wb@(xjy)j

where @(x,y) is a definite function of x and y, for case 2 they will
be P2w~O(x,y) while the total deflecting forces willbe Pcrwm@(x,y).

Here x and y are the coordinates in the plane of the plate, Wb

and W~ are the maximum deflections from cases 1 and 2, and Wm = w + wlm2m
is the total deflection.

Perhaps a better insight into the plqmical meaning of the method of
split rigidities may be obtained by deriving eqyation (1) by using
item (10). Consider a long rectangular sandwich plate compressed in
the X-direction with arbitrary boundary conditions at the loaded and
unloaded edges (fig. 2). According to item (1) the buckling deflection w
is split into case 1, from bending, with deflections ‘1 and case 2,

from shear deformation, tith deflections W2. However, as shown in the

longitudinal section in figure 3, the shear deflection cannot occur
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without bending of the faces (the bending rigidity of the core is
neglected). This means that in the combined structure case 2 c~ot
occur without inducing a partial deformation according to case lj in
other words, cases 1 and 2 sre coupled. According to item (5) one way
to deal with this situation is to split off the coupling action. This
means that in cases 1 and 2 the faces are assumed to have no proper
flexural rigidity. Since, however, the buckling deflection of the two
single faces requires a load equal to theti,proper buckling load Poj

from item (6) their deflection in the combined case will generate em
extra load P. on the plate. Hence, this load po has to be added to

that from the combined cases 1 and 2. The combination of cases 1 and 2
is denoted as the reduced case. This procedure is exact if the buckling
deflection of the single faces (case O) is similar to the total buckling
deflection w in the combined case.

.

.

—

.—

In case 1 (deformationby bending only) the deflecting force acting
on a small element H dx dy, where H is the total plate thickness
(fig. 3), is

where ‘1 is the buckling load per unit width for case 1, neglecting

the proper flexural rigidity of the faces.
A“

-Hence from item (6) the
restraining force is

(4)

.

—

If the plate was supported by an elastic foundation with a foundation ._
modulus cl the trem.sverserestraining force acting upon an ele-

ment H dx dy would be Clwl dx dy. Hence the restraint offered by the

plate in case 1 is equivalent to that of an elastic foundation with a
foundation modulus (spring constant)

(5)

In general, this spring constant may be a function of x and y.

.

.
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L

similarly,
by the plate in.

15

the equivalent spring constant for the restraint offered
case 2 (shesr deformation of the core only) is

Iazl
C2 =-P—

2 &2 ‘2
(6)

where P2 is the buckling load per unit width for case 2. Hence, if
with the actual buckling deflection w the partial deflections WI

and W2 have the ssme shape as in the individualcases 1 and 2, the

reduced plate (without proper flexural rigidity of the faces) offers a
restraint against buckling that is equivalent to the lateral restraint
from two spring systems built in series with spring constants cl

and C2 (fig. 4(a)). Therefore, a unit latersl load per unit surface

causes a deflection

111w=%+%=% (7)

so that the equivalent spring constant for the reduced plate is

8

*

The equivalent
buckling load

Cr ‘ C1C2
(

= c1-1 + C2
)

-1 -1

cl + C2
(8)

spring constant for case O (the single faces), with total
Pos is in the ssme way

Ia2wo

co = -Po &2 ‘o (9)

Hence, if the actual buckling deflection w has the ssme shape as W.

(for case O alone), the equivalent spring constant for the actual.plate
is

C=co+cr=co+ C1C2
(

-1
=Co+ cl + C2

)

-1 -1

c1 + C2
(lo)

.

that is, the spring in figure k(b), with spring constant C, is equivalent
to the spring system in figure h(a).
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.

A plate with a spring constant C will.buckle if for any element

a2w
the deflecting force -P — is equal to the restraining force Cwj so

.

&#
that the buckling load is

P
I

.-cwbcr
bx2

(11)
.

or, from equations (5)} (6]) (9)) (lo)j and (U}>

[

a2wo/ax2 2 I 2)(’2d’3x2)WA
‘cr=*pO ‘o ‘p$.j3&J+p2(34i3q}

b2wo/ax2 w ‘1P2
‘Po 2 —+

a w/ax2 ‘-yo a2w/ax2 ~+p2 a2w/ax25
‘1 2aw2/ax2w a2wJax2w

(rZ?)
.-

With the aforementioned assumption that w = Wo, the first tera to the

right becomes The spring forces in t~~ springs with constants (!1
w

Po.

and C2 built in series sre

Clwi = C2W2 . (13)

so that from equations (5) and (6)

a2wJh2 P2---

a2w.lih2=5
(14)

Further,

w= W+w
12

(15)

.

.
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Using equations (14) and (15), in equation (12) the denominator of the
second term to the right becomes

.

b2w/ax2 ~ + ~2 a2w/ax2 ‘1 . p
‘1 2aw2/ax2w a2wJax2w

,$j+.)%+p2(+~):

( )
W+w

= P2+P1 2W 1

.

.

.

=Pl+P2

Hence equation (12) transforms to

which is

The more
eqmt ion

P =Po+ ‘1P2
cr PI + Pa

(16)

(17)

identical.to equation (1) with PX and so forth equal to zero.

general equation (1) can be deriv~d h the same way. Hence
(1) is exact if wl and W2 differ in shape, but if in the

corposite case w. = w, wl and W2 have the ssme shape as in the

sepsrate cases 0, 1, and 2, respectively. This confirms tliederivation
in reference 14. However, as stated previously, this condition can be
met only if WOJ WI, md W2 have the same sfiape.

equation (1) is exact within the limitations of the
such as neglect of the deformations from transverse
and from normal stresses Cz in planes parallel to

the sandwich plate.

In the latter case

usual assumptions,
shesr in the faces
the middle plane of

Sandwich Columns With Various Boundsry Conditions

C!alc@ations of buckling loads of sandwich plates with several
boundary conditions were given in references 11, 12, and 14. In sand-
wich columns or wide plates compressed in the short direction, the author
considered until now only the simply supported case (fig. 5(a)). Here
the deflection W1 for case 1, deformation from bending only, is a half

sine wave. The buckling deflection W2 from shear deformation alone

(case 2) is arbitrary. Hence, from item (8), in the combined case W1
and W2 will both have the shape of a half sine wave. The single faces



m NACA TN 4085

(case O) will also buckle in a half sine wave, so that, from item (6),
in the combined case the internal moment is increased by a sinusoidal
moment Pow, where P. is the buckling load of the faces. By adding a

load P. to the buckling load Pr of the reduced case an external
moment Pow of the ssme smount is added, so that with a sinusoidal
deflection w equilibrium is maintained in all cross sections. Hence
equation (1) is exact for this case.

In reference 23, the author’s method was extrapolated for calcu-
lating the buckling load of sandwich columns that are clamped at both
ends or at one end (figs. 5(b) and 5(c)). It was tound that for a strut
that is clamped at both ends equation (1) yields exact results, but that
for the simply supported clamped case (fig. 5(c)) equation (1) gives

results that for two exsmples were unconservative by 5 and @ percent.2

This is understandable from the foregoing discussion. In the
clsmped-clsmped case (fig. 5(b)) the buckling deflections W. and WI

for the individual cases O and 1 are both full sine waves and the shape
of W2 is srbitrary. Hence, from item (8) and the above discussion,

in the composite case w, W1 and W2 will also form full sine waves

so that from item (1) the present method leads to exact results. Another
way to see that equation (1) is exact for a clamped-clamped strut is to
observe that the inflection potits B and C are (1/4)1 and (5/4)2 from
the left end. The line of action of the compressive force Pcr passes

through these inflection points. The center part BC is in exactly the
ssme condition as a simply supported strut with length L = (1/2)1 and
the left and right parts AH and CD canbe considered as the right and
left psrts of such a column, respectively (fig. 5(b)). Since pcrj po>

Pl, and P2 in equation (1) also apply to this simply supparted column

with length L, this equation is also exact for the clamped-clamped
Cohlmn●

Consider now the clamped simply supported column of figure 5(c).
For case 1 the buckling deflection is part of a sine wave, with the line
of action of the compressive force as the sxis. If the external and
internal moments ~ and Ml are expressed in terms of the distance of

the column to that axis, the equation ~ = Mi becomes (fig. 6(a))

P~wl ‘ -EsIsd2wl/dx2

This equation and the boundsry conditions are

(18)

satisfied by

P

.
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(19)

where L is the effective length ABl of the column (fig. 6(a)). The
same applies to WO for case O. Since for case 2 the deflection W2

is arbitrary, from item (8) in the composite case it would have the same
shape as WI and w. However, it may be easily seen that In the com-

posite case WI has not the same shape as in the separate case 1. It

is well known that in asymmetrically restrained, transversely loaded
spans the distribution of the bending moments is changed by shear deflec-
tions as, for example, occurs in thin tubes or shells supported”at three
or more points. The effect of cleqing a support diminishes. From fig-
ure 6(b)j presenting the composite casej it is seen that the ltie of
action AC2 of the compressive force enibracesan engle u with the original
axis AC of the sandwich CO-. Hence at the clsmped end C the trans-
verse shesr and the shear deformation is not zero, so that, although in
case 1 (fig. 6(a)) the slope at C is zero, in the composite case the
slope angle f3 at C is not zero. Now, considering first the reduced

(
case PO = O), from the seinereasoning as given in item (8), Wl> W2)
and w till have similar shapes tith respect to the line of action of
the conqxressiveforce but different shapes with respect to WI in case 1.
Hence, from items (1) and (7) and the foregoing discussion, eqution (1)
is not exact if PI and P2 are considered as the buckling loads for

the sepsrate cases 1 and 2. On the other hand it willbe exact if Pl

sad P2 me the buckling loads for cases 1 and 2 as they occur in the
reduced case of figure 6(b).

In the same wayas shown for case 1 in figure 6(a), in figure 6(b)
the deflections WI for case 1 sre givenby eqmtion (19), so that W2

and w till also vary sinusoidally with respect to the line of action
ABC2 of the compressive force Per. Since at C the elastic line of the
strut as shown by the solid curve emibracesan angle with its original
axis AC, the effective length L for the reduced case (fig. 6(b)) is
greater, with respect to Z, thm in the separate case 1 (fig. 6(a)),
where, as is well known, L = 0.72. Thereforej in the actual case PI

is smaller than it is for case 1 in figure 6(a). Since P2 is inde-
pendent of shape or length, it is the ssme as in the individual case 2.
In reference 23, PI from the separate case 1 (fig. 6(a)) was used in
equation (1), which explains why Per was found to be higher than the

(
exact value P.

)was assumed to be zero .

The effective length in figure 6(b) maybe found in a similar way,
as was shown on pages 70 to 78 of reference 6 for various problems,
using the Haarman method. The deflections Wlj W2, and w me measured
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from the Une of compression ABC2. With the deflection WI at

clamped edge no rotation can occur with respect to the original

TN 4085

the

axis Acj
so that the tangent Cl’Cl is parallelto AC~ Hence from fi~e 6(b)

u=- ()$= - + (+=~
x=z

(20)

where

as was
‘1 is given by equation

measured from ABC2,

w=

Insertion of equations (19) and

(19) and, since w has the same shape

Wmsidx
L

(21)

(21) into equation (20) gives

‘L?l3’Ctar+ ‘—d‘m

From items (3), (k), and (6) the equality of external and internal
moments requiresthat

so that

‘lm_wl= ‘1 ‘2=—
Wm w WI + W2 P~ + P2

(22)

(23)

(24)

—

Since P1 is eqyal to the P1 for a simply supported strut of length L,

frcnmreference 11

.%s1s

‘1=— L2
(25)

where (fig. 3)

Is = (1/2)h(t + h)2 (26)
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w

and

21

(27)

where Gc is the modulus of rigidity of the core. Hence, from equa-
tions (22), (24), and (25), L has to be calculated from the following
equation:

/
Y&2Z L

tan Yc4= . -
L

()#EsI~ z z
—— +

~2 L

Then Pl and P2 follow from actuations(5)

equation (1), with PO = O and P5, . . . Pn

‘2

(28)

d (27) ad Pcr =Pr fr~

= o. with the dimensions

used in an example in reference 23, EsI~ = 43,2CKlkg-cm2, P2 = 360 kilo-

grsms, and 22=800 cm2, equation yields Z/L= 1.276, so that

L2 = 22/1.628 = 4gl cm2. Hence equation (25) gives PI = 870 kilogrsns,

so that from equation (1), with P. = 0, Pcr = 254 kilogrsms. This is
. in accordance with the result obtained in reference 23 from an exact

calculation, which shows that also for columms with asymmetric edge condi-
tions equation (1) is exact M applied to the correct effective length of

a the column. However, for such cases, it loses the advantage of its
simplicity.

Figure 6(b) illustrates what was said in reference 14 and under
item (7). The deflections W1 and W2 satisfy the boundary conditions

together and, as seen clesrly from this figure, ‘1
does not satisfy

the boundary conditions. This relaxation of restraints causes PL to

be smaller than Pl from the separate case lalone (fig. 6(a)).

usually P. is negligible, but if the bending rigidity of the faces

is tsken into account, one simply can calculate PO in equation (1) for

the effective length L frcm equation (28),

~~sh3

P. =
6(1 - V2)L2

so that from reference 11

(2?)
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Actually this makes equation (1) s~ghtly consenative, since from fig-
ure 6(b) the deflection w has a sharp break at the clamped edgel so
that PO actually will be slight~ higher than would follow from

equation (29).

Columns With Batten Plates and Latticed Columns

An application of eqyation (l).’thatshows some other features is
the calculation of the critical stress of metal columns connectedly
batten plates with equal spacings (fig. ~(a)) or of timber columns that
are coupled at equal distances (refs. 3 sad 6). In many applications
the deformation of the batten plates can be neglected. Then the buckling
deflection can be split into two cases. Case 1 is caused by bending with
respect to the cormnonaxis (fig. 7(b}). Case 2 is the deformationby
shear, which bends the 8ingle coluuinsbetween the batten plates in S-curves
(fig. 7(c)). These deformations can occur independently of each other, so
that

Pcr = ( -1 + P2
)

-1 -1
‘1

Including the plastic range, ‘1 is sufficiently
by

11% I
Pl=—

22

where

1 = 21C +

Here Et is the tangent modulus, h

inertia of the single columns> A iS

.-

Ah2( /4)

(30)

accurately given

(32)

is the spacing of the axes of
the total cross section of the

composite column, ad Ip is”the moment of inertia of the
In ~ase 2 the batten pla~es translate with
rotation (fig. 7(c)), so that

2#EtIc
p2 =

2
co

where co is the effective free length of
two batten plates.

respect to each

(31)

8

single columns.
other without

(33)

the single columns between
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b

If also the deformation by shear and bending of the batten plates
or wooden connections has to be taken into account, case 3 is added.
(fig. 7(d)). However, now cases 1 and 3 cannot occur independently,
since the deflection w~ for case 3 bends the single columns h a single

half wave with respect to their original axes, which is part of the defor-
mation in case 1. Therefore, according to item (5), the proper rigidity
of the single columns
influence is added in

the moment of inertia

since Ie is assumed

is first assumed to be zero and subsequently its
the form of PO. Hence, in equation

I is that of the reduced column,

q = Ah2/4

tobe zero; P2 remains as given by

[31) for P~

(34)

equation (33).

From reference 6, assuming only the batten plates (or wooden connections)
to deform, the individual buckling load for case 3 is

p3 = Ph2/cv (35)

where c is the center-to-center spacing of the batten plates and v is
the translation of the single struts with respe@ to each other per unit
sheer force Q (fig. 7(d)). b reference 6 the factor p was calcu-
lated for several cases. If the rigidity of the end batten plates is

. half that of the intermediate ones, p=l.

In the present problem PO is not eqpal to the buckling load of
.

the single struts (in contrast to the case of a ssadwich column, where
it was eqpal to the buckling load of the faces), because during the
deflection W2 from case 2 (fig. 7(c)) no deflection in a single half
wave occurs. The bending in S-curves between batten plates causes many
inflection points to occur in the single struts, so that the internal
moment in them is not increased. If the half-wave bending of the single
struts occurred stiltaneous3y with its total deflection w, from item (5)
it would add a resistance in the longitudinal direction OZ the strut of

2~E@c/Z2. However, since this half-wave bending occurs during the

deflection w - W2 only, its curvature reduces in the ratio (W2 - w)/w,
so that the added sxial resistsace is

w - W2 ti2E#c
po=——

w 22
(36)
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similarly to equation (23)

P2W2 = Prw

so that

w- W2 P

w
=1-4

‘2

and

()P 2*2%1C
‘o =1-~—

P2 22

Since with a sufficiently large number of batten

(37)

(38)

(,39)

plates w, iS distrib-

uted sinusoidally and since for W2 3 the buckling’deflectionand W

at the batten plates is arbitrary, by the same reasoning as ~iven in
item (8) for one arbitrary component deflection in the composite case w,
W2) 3 wilJ also have a generally sinusoidal half-wave distributionand W

(actually, from ref. 24, if co = c, the centers of the batten plates sxe

situated on a half sine wave).

From item (10) the column canbe imagined as being without flexural
rigidity smd being laterally supported by a spring system as shown in
figure 8. The equivalent spring constants are givenby equations (.5),
(6), and (9) and by a similar equation for C3. In the same way as shown

for a spring system with spring constants Co, Cl, and C2, this leads

to an equation like equation (1) which now contains a term with P3. The

requirements of items-‘(l)and (7) for equation (1) to be exact me not
entirely fulfilled here, since between the batten plates the elastic
lines in the various cases sre not exactly similar, although their over-
all shapes are those of half sine waves. They will be closer to that
shape, the larger the number of batten plates. Equation (1) for this
problem is

P
( )

=Po+Pcr=Po+ P1-1+P2-l+P-1
-1

cr 3
(40)
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where PO} Ply

replaced by Ir

25

P2, and P3 we given by eqmtio~ (39)J (31) ~~h 1

from equation (34), (33)J ad (35)= Divid@ by ‘he

cross section A gives

*2%
‘m .I_Jo+cr=uo+ —.UO+

(/)Zrl?2

where Zr/r is the effective slenderness

fi2Et

%=-
(/)
zr2

*2%

.-.

. and

(q-1 + U2 )-l+U-l-l
3

(41)

of the reduced case,

7

r2 = Ir/A = h2/k

mm eqmtions (39), (41)j ad (42)J

(42)

h shown more expensively in reference 6, equation (41) may be written
as

fi2%
“Cr=-

(45)
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where the effective slenderness Zeq r is given by
/

()12eq (1),2rr2
—=
r

[
1+ (Zr/r)2 - (’olr.)q~cl’)z

From equations (41) and (42)

(zr/r)2= (z/r)2 + (.o/rc)2 +~2EtAcv/(ph2)]

NACA TN 4085

(46)

(47)

With connections of vanishing rigidity, the factor
becomes infinite, so that equation (~) yields the
nsmely, that the effective slenderness is equal to
struts 2/r=. In contrast, for example, eauations

v in eqmtion (47)
correct result,
thqt of the single
(348) tO (350) of

referencem25 and equations” and {97) o: reference 26 for infinitely
weak connections yield zero buckling loads. From figures 7(c) and7(d)
a batten plate at the center of a column has no effect, so that for a
column tith end connections only, one has to assume that the spacing of
the batten plates is c = 2/2.

An exact formula for the buckling stress of these columns has been
derived in reference 24 for the case in which co = c and the rigidity

of the end plates is half that of the intermediate ones. Changing the
reduced modulus to the tangent modulus ~ gives the buckling condition

where n =

tions (46)

as table 1
tions (46)

-c

l/c ma

sm.d(47)

(48)

Ill= (zq/r)/~/r.)* For this same case, in equa-

Co=c and ~ = 1. Table V of reference 6, given
herein, contains some values of m calculated from equa-
and (47) as well as from equation (48) by Mr. Lie Han Yang.

.*

It refers to timber columns built up from single stfits with dimensi&s
8by 20 ceritimeters,the smaller dimensi.onbehg that parallel to the

plane of bending; ~ was assumed to be 100,000 kg/cm2. Table 1 shows
that equation (~) is conservative and indeed is more accurate for large
numbers n than for small ones. The general accuracy is very satisfactory.

.
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Similar formulas were derived in

27

reference 6 for latticed columns.
coupled by diagonals only (fig. 9(a)) or by diagonals and verticals

,

(fig. 9(b)}, using

I is replacedby
P* represents the

equation (1) with P~, . ..Pn eqyal to zero. If

Ir from eqyation (34), pl is givenby equation (Sl)j

axial resistance of the single columns, so that

(49)

In order to find P2 it is observed that for case 2, where the single

columns are assumed to be infinitely rigid against axial strain, a
slope B of the column with respect to its original axis causes a trans-
verse shesr force Q =P2@ that has to be resistedby the ~cing. Denoting

as Q’ the fictitious trsmsverse shear force that would cause a unit
anF@ar distortion, the equation Q = Q’~

P2 = Q’

Inserting PO, PI, and P2 into equation

is obtained, so that

(50)

(1) gives

1-

As may be easily checked, for a column with diagonals

Q’ ‘~d 6in2a cos a

(50

,

only (fig. 9(a))

(52)

where Ad is the cross section of the diagonals. For the arrangement
shown in figure 9(b)

l/Q’ = [/(1 E& sin2a cos a)]+ (t~ c@’%) (53)

where ~ is the cross section of the verticals. For both these cases
sm upper limit for Pcr is that of the single struts with a free

length c and slendernesss clrs. With diagonal cross sections ~ = 0,

equations (52) and (53) yield Q‘ = O and equation (51) reduces correctly
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to the critical load of the single columns, in contrast with eqpa-
tions (335) to (339) of reference 25-and equations (93) and (94) of
reference 26 which yield Pm = O.

Sandwich Plates With Orthotropic Core

A comprehensive discussion on the application of eqpation (1) to
the elastic and plastic buckling of sandwich plates was given in refer-
ences 11, 12, and 14. It was shown that equation (1) is exact if wlj

W2, end w have the sane shape, such as occurs fbr a compressed long

plate with simply supported unloaded edges. In that case the require-
ments for exactness, stated in item (1), sre satisfied. For a long plate
with simply supported long edges that is sub~ected to shear, the deflec-
tions w~ W W2 differ somewhat, but nevertheless results obtained

in references 22, 23, and 27 differ less than 1 percent from those from
equation (1). This is due to the fact that, although W1 aud W2

differ in shape, the rigidities of imaginary X- and Y-strips (Tarallel
and perpendicular to the long edges) me still of the same order of
nuignitudeleing simply supported at the nodal lines and at the long edges,
respectively.

A more intricate case arises if for one of the component cases the
strips running $n the X-direction (the X-strips) have a rigidity that
differs from that of the Y-strips (fig. 10(a)). For isotropic ssndwich
plates this occurs for a long compressed plate that has clamped unloaded
edges. For case 1 (deformation from bending) the clamped Y-strips are
wch more rigid than the X-strips, which can be assumed to be simply sup-
ported at the transverse nodal lines. On the other hand, in case 2
(deformationby transverse shear forces) in any buckle both X- and Y-strips
deflect in half sine waves so that their rigidities are of the sane order
of magnitude. As explained in reference 14 sad item (7), for cases where
WI and W2 differ in shape two influences occur, one that tends to m&e

eqution (1) conservative and another that tends to make it umconserva-
tive. In the present case the latter influence, due to the fact that
the boundary snd continuity conditions have to be satisfied by the total
deflection w = WI + W2 and not by W1 and W2 separately, is pre-

dominant, making equation (1) unconservative by 7 percent (ref. 28).

Apparently the fact that in the combined case W1 and W2 do not
satisfy the boundary conditions separately is mainly due to the differ-
ence in rigidity of X- and Y-strips and not to the difference in shape
of the deflections wl and W2. By prescribing a con&tant ratio wa/wti

for the amplitudes of the deflections in cases 2 and 1, one prescribes
that the ratio Walww of the amplitudes of the center X-strip”is
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equal to the ratio Wmlwh of the amplitudes of the center Y-strip.

Actually in the composite case this cannot be true. If w~/w~ is.

eqti to a, w~lwm willbe much more than a because of the

clmping of the ~-strips since
‘m

is slld w~ is not affected by

the clamping, as explained-previously. Hence, with a prescribed ratio

w~/w~ = W@w~ = w@w@, one could imagine that for the center

Y-strip w~ has negative end deflections -w@ md WV has positive

end deflections Wlp = w~ (fig. 10(b)). Then the boundary conditions

at y =Oandy = b are satisfiedby w = wl+wa=wlp-lr~ = o,

*ile ‘he ‘atio ‘2yal‘lya of the amplitudes of the actual deflections

‘s ‘re ‘k ‘he ‘atio ‘@#wm’ as “ ‘homd be” ‘s ‘hews ‘he
relaxation of restraints for the component cases 1 and 2, which makes
the actual buckling load smaller than that obtained from equation (l).

Although for isotropic plates with different rigidities of X- and
Y-strips eqpation (1) is still sufficiently accurate, for sandwich plates
with anisotropic core, where the ratio

/Gy Gx differs too much from 1,

as stated in reference 14, eqyation (1) becomes too inaccurate. From
the preceding discussion, the obvious way to improve this situation is
to admit a ratio w~w~ for the Y-strips that differs from the ratio

4
w ‘b

for the X-strips. This leads to eqyation (2) that willbe
. shown to give accurate results for anisotropic sandwich plates and also

more accurate results than equation (1) for isotropic sandwich plates.
Equation (2) will nowbe derived..

Derivation of Equation (2)

Consider a long sandwich plate with isotropic faces, an orthotropic
core compressed in the long (X) direction, and arbitrary boundary condi-
tions at the unloaded edges (fig. n). After splitting off the proper
rigidity of the faces (item (5)) the plate is considered as a grid
consisting of X- and Y-strips, but due account is taken of-the restraints
exerted upon these strips by the twisting moments along their long edges.
This same method was applied by the author in reference ~ and in esrlier
papers for deriving simple formulas for the bending moments in rectangular
plates ~der several loading and boundary conditions. From item (1) the
deflections of these strips are split tito those from %ending about the
cormon middle plane (case 1) and from trsmsverse shesr (case 2).

L& the lateral restraint offeredby the X-strips in cases 1 and 2
. (cases lx and 2x) and that of the Y-strips in cases 1 =d 2 (cases ly

and 2y) be equivalent to that of elastic foundations with foundation
moduli of Cws ~a~ C~~ ~d. C*Y respective~” Hence~ if in the

.
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composite case the deflections from cases 1 and 2 have the same shape as
in the individual cases, from equation (8) the equivalent spring constant
of the reduced plate is

Cr (=Cx+ Cy = C*-1 + c~ )( )q-l+ ~ -l+c -1-1

we (54)

because the resistances of X- and Y-stri.psjust act additively. The
equivalent spring constant of the actual plate which is similsr to
equation (10) is

(C=co+cr=co+ Ch-l + c~ )( )-1-1+ ~ -l+c -1-1
U@ (55)

where co is the equivalent spring constant-for the proper rigidity of

the faces (case 0). The equivalent spring system is shown schematically
in figure 12. Using equations shilarto equations (5), (6), (9), (13),
and (14), where the subscripts 1 or 2 are replaced by lx and ly or 2x
and 2y, in a way similar to that in which equation (10) reduced to equa-
tion (l), equation (55) reduces to equation (2). In equation (2) Po,

p~} p~} ‘w’
and P

*
tie the buckling loads for the individual

cases 0, lx, 2x, lyj and 2y, respectively. Similarly to equtrtion(1),
equation (2) is exact if the component deflections Wo? w~> W2X> WQ>
and w~ for these cases have the sane shape and if these shapes are

the same in the composite case as in the separate cases. Since for
case 2, for simply supported as well as for clamped edges, the X- and
Y-strips deflect in half sine waves (refs. 5 and 12), eqyation (2) will
be exact for simply supported isotropic or orthotropic sandwich plates,
where for case 1 the deflections have this ssme shape. However, as will
be shown, for other bounwy conditions also equation (2) is very accurate
(maximum discrepancy about 3 percent).

Ap@ication of Equation (2) to Orthotropic Sandwich Plates

With Simply Supported Edges

Equation (2) can be applied to orthotropic sandwich plates with
simply supported edges as follows. The restraining force exerted by an
X-strip per unit plate surface canbe written as (fig. 13)

%
Rx=-— ax (56)

.

—

.

.

.

.
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where Qx is the
equation (102) of
subscript 1,

31

transverse shesr per unit width of the strip. IYom

reference 30, for case 1 (bending only)l by adding the

and in the same way from equation (37) of reference 30

(57)

(58)

where N~ is the flexural rigidity of the reduced sandwich plate, and v

is Poisson’s ratio. As explained previously for the reduced case the
proper flexural rigidity of the faces is neglected. The bending rigidity
of the core is always negligible, so that (fig. 3)

Esh(t + h)2
Ns =

2(1- VP)
(59)

where Es

equations
subscript

The shear

is the modulus of elasticity of the faces (skin). From the

on page 11 of reference 31 it follows that, using again the
1 for case 1,

(
2

MW = -Mb _-L&Us
‘-DJ-W a;; )

-$%
2 by

aagles 7x and 7Y csnbe expressed in terms of the deflec-
tions W* ad w~ for case 2 occurring frcm shear alone, since

obviously

(63)

—
—- ,,
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Further, since the faces sre isotropic, the ratio D= of the twisting

moment to twist is Ns(l - v) as it is for an isotropic plate, so that

(a2w )~$wa ~ a2wa
M-=-NS(l-V)=-–— -–—

2axay 2axay

Since

(61)

(62)

(631

Insertion of equations (58) and (63) into equation (57) and of the latter
into equation (56) yields for case 1

a%h a%w
Rb.-—-

ax2 &ny=Ns
;4W

lx+l a4wh
+:(l+V)

$wu
— ~(l-v)—
axh ai%# 13X2*

(64)

If the lateral restraint given by the X-strips in case 1 was given by an
imaginary elastic foundation with a foundation modulus Ch, Rh

be equal to Cwwlx so that the equivalent spring constant is

‘lx

[

Ns 84WU a4wh a4wuch=._=— _ ql-v) 1 l+V)
w~ wfi 8X4 ‘2

—+#
ax2ay2 1

ax2ay2

Similarly the equivalent spring constant for the Y-strips in case

[

4

‘1-y
akww akwh

CQ.= ‘sawu 1

l-y 1

=G-+Z(l-V)=+*(l+VI —
ax2ay2

would

(65)

1 is

(66)

r’

.

.

.
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%

The modul.iof rigidity of the core against transverse shesz’forces
~ and ~ me denoted as Gx and Gy, respectively. Rrom equa-

.
tions (6) and (7) of part 1 of reference 5, ~ and ~ for case 2

.

.

can be expressed as

%x=

%=

so that, using equation (56)

‘2x 1
c&=—=-—

W* Wa

Ca . % 1-—
“w= ‘ZY

For a
conditions

~+ 1 (67)

&&y~
t

imdana.mgous to equations (65) and (66),

ah (t+h)2 % a2w2x—= - ——
ax t w= &2

a%= (t+h)2 Gya2w
& t

‘* *
1

(68)

long ylate with simply supported unloaded edges the boundary
sre satisfied i.f

Inserting this into equations (65), (66), and (68) gives

1
l+; (l-v) ~+g(l+v)k

P2 e+2
— ‘J

(70)
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~&_#(t+h)2

b2 t

~a_#(t+h)2

b2 t

where a is the half wave length in the

From figure U, since the
to csrry the same load,

SO that

ex =

Similarly

ey =

Inserting Ch and C~
gives

G1x-z
P

‘Y

w

.

(7U

X-direction,

(72)

(73)

‘I+m C2X
w~ + w~ ‘c~+c~

w
.++

‘m + ‘m Cu w

from equations (70) and

C~ and C& have

(74)

ex = L

( l+vq
l+rx-$+~. +~ex

)

(75)

(76)

(71) into eqyation (75)

(77)
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●

where

.

.

.

Equation (77) can be

[

1+

FYom eqyations (70),

‘Y =

where

35

lh=t

‘x =
b%x(t + h)2

written as

(>+~)r~’x+~rxey=z

(71), and (76)

1

(

l+ryl+~ J-+*&
~2 ~yp2

(78)

(79)

(80)

(81)
FNst

‘Y =b%@ + h)2

Equation (80) is written as

&ryeX+~2+@2+~r;ey =~2 (82)

Solving equations (79) and (82) for 13x and ey,

[( )]
J32+ $2++ry - ~ ~2rx

6X =

:( )][ ( )]i
1+ ~+~rx J32+ J32+~ry - (1 + v)%~y

B
1 (83)
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●

In equation (2) p. iS the bucklti load of the faces M bu~li~ alOne

occurs, so that, from equation

‘o =

(g) on page 329 of reference 26 .

(84)

where N is the flexural rigidity of each of the faces. Furtherz in
equation (2), in connection with eq..tiom (5)) (6)} (69)s and (75)>

(P* )

-1 -1 = ‘1.xp2x %x
-1 + PA ‘lx = e~h (85)

PM + P= ‘cm+c*

Similsrl.y

(
P~ -’)-’ = ‘Y%-1 + P2Y

mom eqmtions (5) and (69)

2
Ph. >cb

a2
PU=2CU

1

Hence equation (2) can be written as

Pcr = ~ (~ + $)2 ‘$ ~titi+ ‘Sly)
(88)

which result could also have been obtained from equation (55) in combination
with equations (9), (u), (69), (75)$ (76); and(~)” Using equatfon(70)S
eqwtion (88) yields

(P )+7[($+1)’.+F+P2)%] (o)

23?N ~ + ~ 2 f12%
Pm=- b2

—

(86)

(87)

.

*

.

.
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.

where f3x and

. this result is
son of a more
For isotropic

ex .

37

~ are given by equation (83). As stated prmiousl.y,

exact. This will be shown in the next section by comPari-
~eneral formula with the results obtained in reference-32.
core Gx = Gy =Gandrx=ry= r, so that tiom equation (83)

~2+l;v

ey=e= (9)
~2+3j~

() ()
l+~2r+M&+J3~2

2 B

and equation (@) becomes

‘m ‘$ (~+‘~(m+‘Ns) (91)

This result.cenbe shown to be identical to that given by equation (31)
of reference 11 for q = 1 (elastic range).

Plastic Buckling of Corrugated Core Sandwich

or Clamped at Unloaded Edges
*

—

Plates, Hinged

A cross section of the plate is given in figure 14. Considering
ftist case 1 (bending only), from equation (n) of reference 33 or

< equation (22) of reference 34 the bending moment ~ from bending about
the middle plane of the sandwich and carried by the faces, considered
as membranes only, is

( )a2wh a2ww
Mu = -EsIs B —+D—

82 e

where (fig. 3)

Is =~h(t + h)2

(92)

(93)

For obtaining Mh the mament -EtcIc(~2wlJ@ taken by the corruga-

tion cross section, where *tc is the ‘tangentmddulus of the corrugation
. riterial, must be added to the moment carried by the faces. Hence, using

again the ssme eqwtions from references 33 or 34,

.
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where

w=

and Ec is the elastic modulus of

ECIC

~

the corrugation material.

ssme references the ratio Ns(l - v) of

in the plastic rsnge changes to 2EsI~F
equation (63),

the twisting moment
so that, instead of

(94)

(95)

From the

to twist
the present

(96)

The plastic pemmeters A, B, D, and F sme givenby equations (22)
to (24) of reference 33 and equations (21.)or (21.a)of reference 34.
using equations (94) ad (96) gives, instead of eqpation (64),

a%h $%
Rb=-—-

3X2 *

from which, instead of equation (65),

(98)

.

.
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.

In the same way,

.

using equations (92) ad (96) gives

(99).

IS the deflections now be, as was done for lateralJy loaded slabs in
reference 35 and for a stability problem in reference 36>

‘3X= Yx sin :x I

where

}

‘u = Yy sin :X

J

(100)

(101)

J

Here w= and WW ace constants and the ~ are the normal functions

that automatically satisfy the boundary conditions at the unloaded edges,
since they represent the modes of vibration of a Y-strip. These functions
have the general form (ref. 37)

~=+S~+ cosha#)+C2(cosa#- cosh~y+
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so that

WCA ~ ko85

.

= %114%1

=%%m
i

sxe orthogonal, %#%n Canbe

.

(103)

However, since the functions ~
developed in a series of ~:

—

% = khul + kMu2 + k3mu3 + . . . (104)

It appesm sufficiently
tions (101) and (104).

accurate to use only the first terms of equa-
Eence

d2ul

@2
(105)

—

Insertionof equations (100), (101), (103), and (105) into eqyation (98)
gives

.

b

EsIs

Yx [) ‘tc
A+HY

c

d%x
-
dY2

-(B+F)~

(106)

Similarly one obtains from equation (%)

(107)
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b

Instead of calculating al and k~ for various boundary conditions, it

“ msy be observed that, if one or two of the unloaded edges are either
simply supported or clsmped, from equation (41) of reference 12, the
buckling load of a homogeneous plate is

2

[

Ph=~EI-#+P(B
~2

where p and q are given in table 1

w =Ysin

1

+ 2F) + qD~2 (108)

of reference I-1. Hence, with

3X (log)
a

where Y is a function of y alone, the equivalent spring constant isy
analogous to equation (5),

4aaww. 3’(2 4
c = ‘ph—

[

Z EI~‘~ph=~ $4
1

+P(B+ 2F)%+ qD (ILO)
a $

From equations (1o6) and (107) for a homogeneous plate, where ey/ex = 1
-.

andw=O,.

. 4

[

~ EsIs ~ -
2b~2kD

c .cb+cly=b4
~4 fippa

~omparing equtions (l_l.0)and (ill) gives

1

.1%4

(B+2F)+—

1
~4 D

(U)

(Ix2)
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so that equations (106) and (107) become

NACA TN 4085

For exsmple, for clmped edges, from table 1 of reference
and q=5. From references 35 and 36 for these boundary
al = 2.365/c, where c = b/2 so that alb =“4.73. Further)
kn = -o.54g84. With these values

which is in excellent agreement with the more accurate
and q = 5 from equation (112).

Defining, as in reference 31, the shem_ stiffness
of shear to shear angle or

D% = Q#x

In case 2

u P = 2.5
conditions~

(114)

.

values -p = -2.5 .*

‘Q%
as the ratio

(115)

(116) .

.



w

.

where D
Qx

and D
%

are given in reference 38. !I%isgives, analogous

to eqution (68),

‘QYa2%ca=-_—

‘a *

Using equation (@) this becomes

SFea.—D
~z Qx

C* =~D
b2 %

:

J
(117)

(u8)

Insertion of the first equations in equations (113) and (D8) into equa-
tion (75) yields

where

‘x =

J?EsI~

b2D
Qx

from which

(X20)

(X21)
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“

From equation (76) and the second equatio~ in equatiom (113) and (118)

1
‘Y =

{ [’l+FY qD+ ~

1; ‘

F+(B+ F)%
2132 ‘Y

where

fi2E&

‘Y=—
b2DQy

From equation (122)

Equations (121) and (121t)yield

(122)

.

(lz?h)

.

.

In connection tith equation (100),
here as well, so that equation (2)

P
a2

cr =Po +-#

equations (85)) (86)> ad (87) app~
become~, analogous to equation (88),

(Q$~ + efl~) (u6)
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where PO can usually be neglected. F& simply supported plates, from

references Xl.and 1.2,

~2EsIf
p. .

[ 1

*+2( B+2F)+Dp*
~2 ~ (w’)

where (fig. 3)

If . &/~ (E8)

For clsmped plates the deflections
‘w

and W
a

of the Y-strips are

shown in figure 15. Hence only for the deflection w~ do the faces

act as clsmped, while with the deflection w~ they practically act as

simply supported so that in accordance with item (5) in the section
“Description of Method”

zY!&02= fJypol+ (p ~y)po2Po=~Pol+ Wm (w)

‘ere ’02 is identical to P. from equation (12.7)and, since the clsmped

edges p = 2.5 and q=5 (refs. hand 12),

Equation (I..@)is slightly conservative, since for case 2 the break in
the faces at y = O and b requires extra energy. Hence, for simply
supported unloaded edges, from eqmtion (1.26)using egpations (113) and
(127) with p=2andq=l,

2#Es~ *
Pcr =

[
~ I+2(B+2F)+Dp* +

b2

[[

#E& A + (@tc/E)

b2 p2 ][ 1}
+(B+2F)ex+ (B+2F)+Dp2ey (131)
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For clamped saudwich
and (130), tith p =

NACA TN 4085

plates, from equations (~3), (126), (12’j’),(~),
2.5 and q=5>

[

12E3ED_@dQ - r 1}+1.25(B + 2F) ex+ 1.25(B + 2F)+5DP2 ey
~2 p2

(132)

where ex and Ely are givenhy equation (~). Besides from the

formulas in references 33 and 34 A, B, D, andF canbe read directly
from chwts in reference 39 as functions of the secant and tangent moduli

—

for the actual buckling s~ress Cw = Per/%.

In the elastic range, from references 33

A=
I

B+2F=D=l (l-

so that for a simply supported plate equation

T

—

or 34,

~2
)

—
(133)

(131) reduces to
.
.

\

(134)

where ex and ey from equation (125) with p = 2 and q = 1 reduce
to

●

—
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.

#+*(l-v)-

‘=7++’‘x=L+ti+l-:-:
( [ P2 T]p}[2+(~2++)%]-h(1— I

(135)

If the proper flexural rigidity of the faces is neglected (~ = O) and
P~r is written in the form

(136)

k~ from equation (136) can be shown to be identical to k~ from refer-
ence 32. With v = O, since in eqution (135) =x = 1 -

Y(
( v2)rx and

F =1- v2)ryj these equations for e~, 6YJ ~d Pcr reduce to

equations (83)-and (@), so that slso these equations me exact.

For a clsmped sandwich plate in the elastic range equation (132)
reduces to

21r2E#f ~
Pcr =

(1- [
v2)b2 ~

+2+*ey+

n2EsIs ( 1+1-V 2)

(1-
2\ 2

V lb {[ (P2,

1
(I+ key)~2 +

1 1

+ 1.25 ex+ (1.25 + 5p2)ey (137)

.
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where, with p = 2.5 and q = 5, from equation (I-25)

NACA TN 4085

# + .%2 + O.*(1-v)~y -o.627&2x
0==

1-V2

1+ Mb!% + ().62=j(,-‘vA B2+ 5f#+ O.*(1 - v)~

L
P2 1-V2

}{ [ 1.-.$]’s

B2+[~+o.6~, +2vZx-o:@~-+ l-vry1-+

“={l+[+p+o:-q+qJ

[ 1}

6.z5iyj
92+ 5p2+ 0.625(1- v)* -

l-v’ 16(1- V2)

(m)

.—

( )For isotropic core) Fx = ~Y = 1 - V2 r where r iS given bY equa-

tion (78) or (81) with Gx ~ ~’= Gc or

YT2E&

r = (1 - ~2)b2Gc(t‘+h)2

(139)

Here Gc--is the modulus of rigidity of the core. Further v = O. Thus

equations (137) and (138) reduce to

2#E&
+ 2+* ey-+ (1+ 4ey)132 +

‘Cr = (1 - ,2)b2[;
1

(140)
,

.

.

—

.

.
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.
where

“

.~P2+ 0.6~(1- v)(1+ B2 r

[
[ (

‘x”#+ l+s~E+o.6~(1-~)(l+p2~r+ z.kzT~+O.~l-V)~
)

+ 2.5+ 5P2 #

: ~1

(141)
~2- 0:25- 0.625(1- V) 1 + p2) r

( )
+ 5$2+ 0.625(1- v)(l+p2)r+ 3.437’5+ 0.625(1 - v) .$ -I-2.5+ 5p2 $

It se- that the maximum discrep~cy between the simple formulas
for isotropic-ccme sandwich plates derived in reference I.1and the exact
calculation occurs for the present case of clsmped edges. lkom refer-
ence 28both lead to the same buckkn loads for r = O and r= 1 and
the maximum discrepancy of 7 percent occ&rs if r is about 0.25. From
table 1 of reference 28 where, as usually canbe done, the proper rigidi-
ties of the faces have been
stress coefficient

k=

occurs with r = 0.25 for

neglected, a minimum vslue of the buckling

b%pcr (l-#)#Fcr
—=
YC2NS #Es Is

(lk?)

$ = 0.6 where k= 2.88, while from refer-.
ence 11 for the ssme case k = 3.08. AlSO eqyations-(lk) and (141)
with If =Oforr = O and ??Z 1 lead to the same values of” k as
these given in reference 28. For the case of greatest discrepancy
between references 11 and 28, with r = 0.25, B = 0.6, and v = 0.333,
they yield f3x= 0.s24, ey = 0.274, and k = 2.94, or only 2 percent
more th the exact k value from reference 28. On the other hand,
“though more ac~ate, equations (lb) ad (141) me more intricate tham
the eqqations derived in reference 11. Their advsntage with respect to
those h reference 28 is that an explicit formula is obtained for Pa
or k. .-

For smdwich plates with orthotropic core, where as stated in refer-
ence lk.the method of references 11 and E cannot be used if the
ratiQ Gy/Gx differs too much from 1, the present formulas lead to very

accurate results. It was shown in the foregoing discussion that for
simply supported plates they are exact. For clamped plates, in the
limiting case where rx = O and with I-L= O and ~ = O, eqmtions

.
and (138) reduce to

( 137}

.
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‘“=(’:;”[($+‘“3”+‘1”25+“2)%-
ex s

‘Y =

,2- [0.6’5~y/(1 - v)]

{
p’ + [m’ + 0.625(1 - II ‘Y/(~ - ~’)]

.

(143) -

(144)

From these formulas, for example, with ~ = 1, fiy= 0.25, 1, and m,
and V = 0.33, one finds that

(145)

is equal to 4.67, 2.59, and 1.45, respective. l?romfigure 4(a} of
reference 32 for p s 1 and the same values of ~y, ks is 4.55, 2.51,

.

and l.ko, respectively, so that the discrepancies ~e not more than
3 percent.

●

This shows that also for sandwich plates with orthotropic core the
method of split rigidities leads to accurate results. If necessary,
similar formulas can be derived for other boundary conditions.

Buckling of Homogeneous Plates Under

Stress Distribution

Nonhomogeneous

Item (6) in the section “Description of Method” can be used to calcu-
late deflections of columns and plates with initial crookedness, as was
done in footnote 2 of reference 1 and in reference 15, respectively. It
can also be used to find the axial resistance of initially flat plates
under nonhomogeneous stress distribution, as was done in references 15
and 17 for plates in the postbuckling stage. The seinemethod can be
applied for calculating the critical load for incipient buckkhg of plates,,
under initially nonhomogeneous stresses. In all cases the restraining .
or internal action of the plate is derived from the case of uniformly
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distributed stress. Hence the condition for the accuracy of this method
is that the shape of the deflection surface for the nonhomogeneous stress
distribution considered is practically similar to that under uniform
stress.

Such a case occurs, for example, with buckling of a long simply
supported flange under linearly distributed stresses ax (fig. 16). b
a similar way as under uniform stresses ax the bending moments ~
(and Mx) will be relatively very small so that

to remain straight in the

For uniformly distributed
to 0.3, from reference 40

lateral.direction or

w= Ky sin~x

the plate canbe as;umed

(146)

compressive stress with Poisson’s ratio equal

%=k~= %
‘cr 0.425 = (147)

b% b%

me external and internal actions that sre compared (item (2)) are the
rncmentsof the deflecting and restraining forces with respect to the
hinged edge. For wiform compression the deflecting forces acting upon

a small element t dx dy are -tacr(#w/i3x2) dx dy, so that frmn
equation (146) they can be expressed as

D= Clacrw dx dy = Cuwy dy (148)

where C is independent of y. Hence the external moment exerted by
the forces D acting upon a cross strip b dx about the hinged edge
y=o is

(149)

Then, from item (6), the moment exerted about the
restraining forces acting upon the strip must be

hinged edge by the

Mi = % = * cacrb3
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Since under nonunifom
remains valid, also in
compressive stresses

NACA TN 4085

compressive stresses (fig. 16) equation (146)
that case Ml is givenby equation (150). With

(151)

the deflecting forces =e, analogous to equation (148), D = CUxy dy,

so that they exert a moment about the hinged edge of

% ‘JobQY dY=c Jobaxy2W II=Cue (1 - 7) obY%f+; by3w
J1o

4-T= ~ Caeb3

Since Me should be

the critical maximum

1- J

(152)

equal to Ml, from equations (147), (150), and (152)

edge stress U. is

() 4 = 1.70 f12N
‘e cr ‘ ~ acr 4-T~

For T = 1 and 2 this yields k values of 0.568 and
in accordance
occurs at the

with valu=s given in reference
hinged edge (fig. 17), so that

.

(153) .

0.850? respectively,
46. If the maximum stress ge

‘X=a+’o
and T varies between O and 1, the external

(154)

moment is

J
b b

J@
J

b
Me =-C 4 -37 ~aeb3

ax? Q = Cae dy-: Y3 W ‘u
o 0 0
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so that ~frm eqpations (147), (lx), and (155)

() 4._. m= ML&
ae cr

4.3T 4 -37 b2t

For T = 1 one obtains k = l.~0, in accordance with

53

(156)

reference 40.

Ultimate Load of Plates Under Compression

In reference 15 item (6) (section “Description of Method”) was used
for determining the postbuckling behavior of a simply supported plate,
the unloaded edges of which exe held straight in the plane of the plate,
assuming the plate to remain elastic. This method wi12 here be extended
to the plastic range in order to find the ultimate load of such a plate
(ref. 41).

It was shown in reference 15 that up to deflections of the order
of the plate thichess t practical exact results can be obtained by
assuming the shape of the deflection surface of the p~ate to remain
similar to that at incipient buckling, that is,

(157)

. where a = b. Considering the deflection to be developed in a Fourier
series, the distribution of the total direct stress ax in the post-

buckling range, as sketched in figure 18, will tend to superimpose on the

deflection from equation (157) partial deflections Aw = W13 sin~x sin% y,

for which the individual equally distributed buting stress Cx is

25 times that for the mode of equation (157). The stresses ay (fig. 18)

superimpose deflections sin~xsin~y snd w33sin~xsin #y,
’31

with individual equally distributed budding stresses *Y that are 25

and 9 times, respectively, those connected with equation (157). Hence
the required deflect- forces for bending in these modes are much higher
than for bending in the mode of equation (157), which makes the contri-
bution of these modes relatively small. In the elastic range the mem-
brane stresses %x ~ in figure 18 are (ref. 15)and a
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CTm = cr-

ab = ‘W

In reference 41 it was shown that it
the same distribution in the plastic
somewhat from that used in reference

is sufficiently accurate to assume
range. Using a method that differs
15 the uniform stress distribution

‘

.

Mu that is equivalent to the metirane stresses am can be calcu-
.— —

latedasfO1lOws: H ‘X=(”x)u does not vary with y the work done
by these compressive stresses per buckle with deflections w is from

—

equation (157)

On the other hand the tensile stresses am from equation (158) would
exert a work

(160)

From equations (159) and (16o) the membrane stresses tsm are equivalent

to equal~ distributed compressive stresses

()aXu= -;am (161)

The work done by uniform compressive stresses
()~y u is

.

-.

.

.
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so that from equations (15g) and (162) an equa~ distributed stiess
is equivalent to a stress ‘Y

()ax u = $ FY)U = ~2(ay)u

Hence, from equations (161) and (163)
shown in figure 18 is equivalent to a

() 2=axu= axe-k mxln+

the total load on the plate as
uniform load

The membrane stresses a= sre caused by

~ddle strips GE due to the deflection w

so that the difference
and GH iS

Assuming, as proved to

does not vary with x
stress distribution so
stress

(163)

)aw-i%wn (164)

the increase in length of the

which amounts to

(165)

between the aversge direct strains in the strips AD

(166)

be true in the elastic range (ref. 15), that ax

and that Poisson~s ratio does not influence the
that it can be assumed to be zero, this gives a

o2
= Esx~= = ~ E ‘m

%um 4 Sxy

where Esx is the secant modulus to be applied. Similsrly

(167)

( 168)
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At incipient buckling the
rigidity of the plate sre
caused by the compressive

(16g)

restraining forces offered by the bending
just in equilibrium with the deflecting forces
stresses ax = qacrY where acr is the elastic

buckling stress of a simply supported plate (ref. 26, p. 329)

(170)

and ~ is the plastic reduction factor. The deflecting forces sre pro-
portional to the center deflection Wm of the plate. Stice the restrainiW
forces sre due only to the bending stresses in the plate (the menibrane
forces are included in the loadings ax and ay) in the elastic range

they are also proportional to the deflecting. wm” ~erefore~ ~th finite
deflections the plate will be able to resist stresses ax snd ay

(including the menibranestresses) that sre equivalent to uniform stresses
.

()ax u = ~acr (171) .

●

where fi is the plastic reduction factor of the plate flexural rigidity .
at the actual finite deflection wm. Since the actual loading of the

.-

(Jplate is equivalent to u u from equation (164), combination of equa-

tions (164), (169), and (171) gives

or

a
$

1 h%am
xe - 4P

am--
E

= ~ucr
Sx

k(axe - fiacr)

ahxm = 3 + (P4ESy/ESX)

(172)

(173)
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.

Hence from figure 18 and equation (158) the average stress, that is, $he
postbuckling stress CW, is

(174)

Apparently the postbmkling stress %
depends on ~ = a/b. In general,

the value of ~ corresponding to a mini?mxnvalue of %
wiIl decrease

as the deflection Wm ticreases. Howev=, as explained in reference 41,

the plate will not be free to change its wave len@h continuously because
at a certain wave length the buckles till ~tfreeze.’lThis process can be
illustratedby considering a very long plate for which any wave length
would satisfy the boundary conditions. For such a plate the plastic
deformation due to compressive and bending stresses will cause permanent
buckles so that after a certain stress has been reached the wave length
becomes fixed. IYom available test results it appesrs that the wave
length that establishes itseM at incipient buckling is =intained in the
postbuckling range. !l?heonly plates that exhibit a postbuckling stress
are those that buckle in the elastic range, where at incipient buckling
P a/b = 1. Hence in eqzation (173) 13 may be assumed to be 1= ~
t& case Esy/Esx ~ also be assumed to be 1.

From references 25 and 42 for simply supported plates with edges
that sre not held straight the ultimate load is a function of the yield
stress ~ys and the critical stress am. The (average) ultimate stress

was found experimentally as

IJflt= (/)be b Cys = W-0-25”cr (175)

Assuming that in the present case, where the edges are held straight,
the ulttite load is reached when the edge stresses axe reach the yield

stress, from equation (173) tith P = %y/%x = 1 and axe = Uys,

‘mm = Uys - ijucr (176)

so that the ulthte stress is, from eqyation (174)with U= = atit and

cxe = ~ys~

(177)
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In reference 41 it was shown how for a given case ~ can be calculated
from the plastic deformations of the plate. Since this calculation is
very involved a direct formula was derived for ~, which for the case
considered was shown to be in excellent agreement with the more exact
calculation. From reference 17 for edges that sre not held straight in
the plsme of the plate, to which equation (175) refers, the mnibrane
stresses G& and aw are equivalent to a uniform stress

()ax u = -o.@@am (178)

Also in that case the equivalent loading of ,theplate should be equal
to lam. With edge stresses ays this gives

~ys - 0.84%== ~acr

or

annml= 1.18crys - 1.18~acr (183)

Equation (174) also applies here so that, with aq = out and axe = ays,
using eqmtion (180) gives

and

atit = 1
ays -~%mll = 0.41aYs + 0.5gijacr (181) -

.

‘Ult
i =l.7—-

aer

Insertion of a~t from equation (175)

1

0.7 ~

yields

(182)

()
$

t= 1.7P - 0.423 - ().7~ (183)
cr

Since ~ thus is based on test results for relatively l.mge deflections,
it automatically also contains a correction on the use of equation (257)
in that rsmge. In order to apply this result to the present case with
edges that are held straight, it should first be determined on which
vsriables ~ depends. It is dependent on the direct stresses ax and c “

Y

.
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that vary with % (fig. 18) and on the bending strains

the strain difference between both faces of the plate. At
the buckle this dtiference is

On the other hand, from equation (166),

()
l/2

2a
(%)

1/2 2a %un
‘m=~

=——
z Esx

so that from eqyation (18k), with a = b,

From equation (170), with jl= a/b = 1,

()L1
1/2

t- = 0.525 ~
b

so that equation (186) becomes

Hence, since ~ depends on % and A~b, it obviously

59

measured b~
the center of

(184)

(185)

(186)

(187)

(188)

can be con-
sidered as a function of ~ and Ucr. From equation (179)

~=o.848 h+; (189)
CC??

Inserting this tito eqpation (183) gives ~ as a function of a-

and acr
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%Xm am 1/2i = 0.25 - 0.35
()

—+ o.71—
cm acr

With this value of ~ for the present case, from eqpation (176),

am ays
0.25 + 0.35 = -

%nRn ‘~’—= —-

()

0.71 —
acr acr acr

fiOm which

(lgo)

(191)

.

“

a-
—=
ccr

After calculating am

tion (177).

[( )]l!’ 2
-o.5k5 + 1.54%- 0.0865 (192)

acr

from equation (192), tit follows from equa-

In figure 19 ault/acr

function of aer/ay~ as the
nent test results for simply
held straight in their plane

from equation (175) has been plotted as a

dashed curve @. In the same figure perti-
supported plates with edges that are not

-.

are indicated .bysquares, as plotted from ●

reference 43. The squares refer to square-tube tests by Needham (ref. 44)
and the diamonds refer to V-groove tests by Anderson and Anderson
(ref. 45) which are also shown in reference 43. This shows that formula ‘-
(175), determined by Winter from tests with light-gage steel (ref. 42)
involving plates that are not held straight In their plane, leads to
excellent results. Hence,~e formula for ~, derived from it and pre- ‘“ “
sented herein as equation (190), can be considered as well based. There-
fore the combination of equtions (177) and (1$2) can be ewected to
yield satisfactory results for plates with simply supported edges that
are held straight in the plane of the platee In figure 19 ~~t/acr

from these equations has been plotted against
/

acr ays as the solid

curve @; the test results from Botman (ref. 46), as given in refer-

ence 43, are indicated by triangles. These tests were done with three-
bay plates between knife edges so that the edges were not held completely
straight. The test results should therefore be located between the

—.—

curves @ and @, which indeed occurs. The theoretical results from

reference 43 for plates with edges held straight are indicated by circles.
These are a little above curve @. This maybe because inreference~3 - - —

Poisson’s ratio was assumed to be 0.5 for plastic as well as elastic .

deformations which increase the plate rigidity above its actwl value.
Hence eqmtions (177) and (lgp) yield reliable results.

-.
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Formulas based on the same principles have been derived in refer-
41 for the ultimate load of stmply supported and clamped plates

under the additional influence of thermal stresses. Also formulas were
derived for the equally distributed stresses ()ax u and

()ffyu ‘it
are equivalent to arbitrarily distributed thermal stresses ax and Cy

as fer as critical as well as ultimate loads are concerned.

PROBLEMS WHIRE COMPONENT CASES HAWE DIFFEMNT BOUNDARY CONDITIONS

Problems where the component cases have different boundexy condi-
tions have been dealt with in references 13, 16, 17, 18, and 19. As
pointed out under item (6) these problems lead to more intricate relations
between Pa and Pl, P2, . . . Pn than those where the boundsry condi-

tions for all cases are the ssme. A simple example is’the ~roblem of
determining the buckkn stress of an I-section about its minor axis.
The buckling deflection of the cross section is shown in figure 20(a) and
is split into case 1, a deflection as a column without distortion of the
cross section (fig. 20(b)) and case 2, a distortion of the cross section
(fig. 20(C)). This poblem was dealt with extensively in reference 13
where the deflecting and restraining forces were chosen as the external
and internal actions. This method was sufficiently accurate becawe the
decrease of the colunm buckling stress U1 (case 1) or plate buckling

. stress ff2 (case 2) from the interaction of cases 1 and 2 was only a

small fraction of the actual buckling stress.

.
Somewhat more accuracy can be obtained by comparing the work done

by deflecting and that done by restraining forces. This”method was used
in references 17, 18, and 19. It will be demonstrated here in deriving
the buckling stress of stringer panels.

The stringer panels considered are supportedby stiffeners of eqyal
cross section and located at eqml distances b (fig. 21). The half’
wave length of buckling in the X-direction is denoted as a (fig. 22(b)).
If no stiffeners were present, the buckling deflection of the plate would
vsry sinusoidally in the X- and Y-directions. If stiffeners are present
and the deflection WI (fig. 22(a)) which determines the deflection of

the stiffeners vsxies in the same way,

-tux(a%lax2)per unit plate surface,

sive stresses ax which the panel can

will as a whole vsry sinusoidally too.

if the restraining forces EI(d4w/dx4)

the additional deflecting forces

caused by the additional compres-

sustain due to the stiffeners,

Hence, equilibria is possible

per unit length suppliedby the
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stiffeners also vary sinusoidally in both directions. This is indeed
the case if WI vmies sinusoidally. Hence, it may obviously be assumed
that

W1 =whsin~ %in*=Y1 sin Ax (193)

where

A = 7t/a (194)

In a similar way, as was done in reference 13 (fig. 20) for deter-
mining the interactionbetween column and plate buckling, the buckling
deflection of the panel (fig. 22(a)) could nowbe split into two cases,
and the buckling stress Ucr expressed in terms of the individual
buckling stresses for these cases. In the present case a slightly
different approach is used by first splitting off the.buckling stress aO
of the unstiffened sheet, caused by its buckling into the shaye WI from

equation (193) and denoted as case O, as indicated by the first method
under item

where

and ~ iS
deflection

(5). From page 329 of reference 26,

(195)

P = a/b (196)

the flexural rigidity of the sheet. The resulting buckling
of the reduced structure with buckling stress crr= Ucr - Uo,

.

.

where consequently the partial buckling stress U. caused by the rigidity

of the sheet against bending into the shape W1 is neglected, is then

split into two individual cases. Case 1 is the deflection wl~ shown

separately in figure 22(c). Case 2 is the extra deflection W2, shown -.

separately in figure 22(d), which is caused by the deflecting forces acti~”
—

on the sheet and created by the partial buckling stresses ar = acr - U.

that cannot be t&en by the unstiffened sheet. These deflecting forces
sme consequently resisted.by the stiffeners,which cause the bending of
the sheet into shape W2 like a laterally loaded continuousplate on
several supports.

.

●
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Hence, the actual buckling stress of the panel is

63

where crr has

the individual

Since the

~cr=(Jo+ar (197)

to be expressed in the buckling stresses cl and U2 for

cases 1 and-2, respectively.

flemral rigidity of the sheet has to be neglected here.
in case 1 the buckling str=ss i~ is due to the flexural rigidity ~f-~he
stiffeners alone. The critical thrust of the single sttifeners, with
effective moment of inertia 1, is

/% = fi2EIa2 = h2EI (198)

Hence, the restraining force RI acting on em element of length dx of

a stiffener if bent into a ha~ sine-wave is equal to the deflecting

force D1 = (J-PI ~2w &#) dx or, from equation (193),

Rl=Dl= A+lwl

At incipient buckling of the complete panel

dx (199)

the compression Astcm in
. the stiffener itself, with cross section Ast, causes a deflecting force

so that the restraining

RI! =

Therefore, by comparing

(200)

force exertedby a stiffener on the sheet is only

RI - Dst = X2(P1 -
)‘fitUcr‘1 a (201)

equations (199) and (201), the restraining force
exerted by a-stiffener on the sheet is equal to that exerted by a stiffener
with a zero cross

,The buckling
. nay be written in

.

section and a critical thrust

PI ‘ = pl - Astuw = 1% - A#cr (202)

stress for buckling in a sha2e like that in figure 22(d)
general as (ref. 25)
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where the computation for p and q is given in the appendix. However,
since only the reduced case is considered, where the part aO from eq..-

tion (195) for buckling in a shape like W1 must be ignored, the critical
stress for the present case 2 is

CL21= ap - 00 -=~-:+(.-j)+p (2O4). k,, ~

In order to express the reduced critical stress ar of the coribined
structure in terms of P1’ and U2’ from equations (202) and (204), the

work done by the deflecting and restraining forces will be compared. !Ihe
deflections W1 and W2 in figure 22 both--varysinusoidall.yin the

X-direction (fig. 22(b)) so that, simih to equation (193),
—

= Y2 sin Ax (205) -W2

where Y2 is a function of y alone. Hence, at the reduced buckling—
stress the deflecting force in the Z-direction (fig. 22(a)) exerted on .
a sheet element t b dy as a consequence of the deflection w =W1+W2

,is -tar(~2w/~x2) dx dy or, from equations (193) and (205), s

D .&r@1+w2) tidy (206)

Since from figure 22(a) the deflection W2 does not involve w
deflection of the stiffeners, it is evident that the work done by the
deflecting forces for the deflection W2 is taken entirely by bending

of the sheet in the shape w2. Furthermore, since the reduced case is

considered, where the flexural rigidity of the sheet is ignored for the
shape WI, the work done by the deflecting forces for the deflection WI

is tsken by bending of the stiffeners alone.

The deflection wl win be considered first. Denoting the deflec-

tions of the stiffeners as

Wst = wstm sin ~ (207)



)

.

.

mm m? Lu85 65

where Wst = Wl, from equations (201) and (202) the restraining force

exerted by a stiffener per length

R1’ =

From the foregoing discussion the

a

dx is

Aywst dx (208)

work done by the deflecting forces D
from eqyation (~6) for the deflection W1 has to be eqti to the totil

negative work done by the restraining forces RI’ from eqyation (208)
furnished by the stiffeners. Hence,

or, using equations (.206)and (~8) and dropping the terms %/2,

where the double inte~als have to be extended over the entire sheet with
dimensions a times

. stiffeners. Eqyation

and, since Wst =W 1

“rib and the summation sign refers to the (n - 1)
(209) my be written in the form

we indicated in figure 22(a) snd where

(fig. 22( a)), using equation (193) gi~es

i=n-1

(210)

(211)
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.
Hence equation (210) transforms to

=0

where, from equation (~2),

P. ‘

K .!ik
bt

(213) “

(214)

(215)
—

(216)

Replacing al‘ in equation (213) by the last term of equation (214), in

which again Ucr is expressed accordiag to equation (197), equation (213)
becomes

[ .( g(1+ 03r- u~- Kcro w~+qarw~=o

●

(217) ‘

L

In order to obtain a second relation between Ww and w~ the work
done for the deflection W2 is considered. In case 2 buckling occurs

at the stress a2’ from equation (204), so that the restraining force

R2 t dx dy is equql to the deflecting

actiWflt~~~q;#) dx dy = h2ta<w2 dX @.force D2 ThifIrestraining

force R2 depends on the deflection W2 alone and not on the compressive ‘–

stress so that, with the assumption that in the combined case the deflec-
tion w2 has the same shape as in case 2, also in the combined case the

restraining force is

R2 . 12ta2’w2 * Q

.

.
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%

Ecyzatingthe work done for
* from eqpation (206) to the

from equation (z18) gives

. PP

the deflection W2 by the deflecting

negative work done by the restraining

nfi

67

forces D

forces R2

& J %~dY=$Jp2w2~dY
2

Using equations (206) and (=8) and dropping the terms A2/2, this
becomes

J J
~22 &dy=tc2’tar W1W2 dx dy + tar

J
W22 dx dy (~9.)

or

( )7drw~+ Ur - U2’ w~

where

J!!W1W2 ax @

7
‘a=—

J
‘lm W22 & @

(220)=0

(221)

The buckling condition is obtained from the two homogeneous equa-
tions (217) and (220) by equating the denominator determinant to zero,
which yields err,so that from equation (197)

acr =Cro+ar

[{ 1)
1/2

al -Kcro+(l+K)CQ~ h(l-7q+d(U1-~ao)U2’
=a+

o
1- 1-

2(1-7P+K)
[ 1

2
U1- Iwo+ (l+ K)C21

(222)
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where

k =k +1+~(1+~)
cr o 2(1 - 7T + ~)

a = kcr fi
cr b2t

.

(223)

(224)

o‘ %’/(%- %)
and from equations (195), (204), (215), and (216)

%
K ‘x

(=5)

(226)

●

b

The values of p, w and yg for the cases of 1, 2, 3, and an infinite
number of stiffeners are determined in the appendix and are assertibled
in table 2. If kl = Oand~= O so that no stiffeners are present,

equation (224) reduces to &-r = ~Y as it should be. If %: and

thus S1 are infinite, so that no interaction occurs, equation (2!24)
becomes

k [@+~r+.j=l
cr =

(1+ K)
(=7) “

.
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in accordance
be used if ~

with equation (1) of reference 47. Equation (227) may
> 8. The lsrgest interaction occurs for small.values of p.

.
In table 3 the results from equation (224) for P = 1 axe compared with
those scaled from the graphs of reference 47. The values from refer-
ence 47 for kcr > 4 refer to the extension of the EI/(bli) curves.

The only importad discrepancies occur for n = 3, EI/(bN) = 0, and
0, where the value from reference 47 is placed within parentheses,

~i;ce here indeed from equations (224) and (226) kcr = ~ = lw/81 = 1.235

so that the graph seems to be inaccurate at that point.

The interaction is the smaller the larger the value of Q is from
equation (225). In a similar way as was done with equation (@) of refer-
ence 13, for not-too-small values of O equation (224) maybe simplified
by observing that the term in the large parentheses maybe written as

1- ((1-.)1/2=1- 1+ -~.a)=~++p) (=’8)

since in that case c
tion (224) transforms

is small with respect to unity so that equa-
to

kU=kO+ Q
* l+Q(l+K}

[ 1
‘+& : ?::$ (’1 -‘) ‘-)

. For still larger values of 0, the term 1 in the denominator of the
fraction within the large brackets may be neglected, so that equation (229)
becomes

k

[ 1

=~+Q+l-7q+K
‘1-%

cr
(1+ K)2 l+ Q(l+IC)

(230)

Equations (~ ) and (230) are sufficientl.yaccurate if Q is larger
than 1 aud 4, respectively.

Values of kcr may be calculated directly from equations (224),
(229), or (230). They have to be calculated for half wave lengths
a = 2/m, where Z is the simply su~orted length of the panel in the
X-direction (fig. 1) and m is an integer (for only an infinite number
of stiffeners can a be assumed to be equal to 2). The lowest value
of kcr so obtained has to be inserted into eqution (223). The

.
effective moment of inertia I of the stiffeners to be used in
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equations (226) for calculating kl has to be determined as shown in

reference 20, where also a formula for the buckling stress coefficient
for forced crippling is derived from equation (22k).

.

This example shows that the method is applicable and gives accurate
results for very intricate problems as is shown also by its application
in references 13 and 17. The present problem was also worked out for
stresses

aY
acting simultsmeousl.y in a direction perpendicular to the

stringers as msy be caused by thermal stresses, but it was thought that
omission of the stresses aY

gives a clesrer picture of the method.
—

It should be noted that in reference 13, where the deflecting and
restraining forces acting upon an arbitrary small element were chosen
as the external and internal actions} these forces were e~ressed in
terms of the maximum deflections w, Wl, and W2 to which they were

proportional. In the present case, and also in reference 17, where the
work done by the deflecting and restraining forces was considered, the
forces acting upon all elements must be tsken into account. These forces
cannot be expressed in terms of the maximundeflections, since for dif-
ferent elements different proportionality factors apply. Therefore they
were expressed in terms of the local deflections W> Wl, and W2 of

the individual elements, which expression in all cases considered was
facilitated by the sinusoidal variation of the deflections in the X-
direction by which the deflecting forces -tax #w/c3x2 are proportional

to w.

Since references 13 and 17, where the method was applied to several
other cases with different boundary conditions of the component modes~
are directly available, it is thought unnecessary to give other examples.
The reader therefore is requested to consider references 13 and 17 as
part of this section.

Cornell University,
Ithaca, N. Y., June 28, 1956.

—

.
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APPENDIX

COMPUTATION OF p,

computation of p and q

q,myp

in Equation (203)

For n = 2.- For plates with one stiffener (fig. 23(a)) in case 2
(fig. 22(d)) each plate of width b can be considered as sim@y supported
at one unloaded side and clsmped at the other one. From reference 48
for the clamped simply supported case p = 2.27 and q = 2.45.

For n = 3.- For plates with two stiffeners (fig. 23(b)) plate AB
is simply supported at edge Awhile at B it is subjected to a moment
that vsxies sinusohilallyin the X-direction. Plate EC is subjected to
equal and opposite sinusoidal moments at edges B and C!. The buckling
coefficient ~ can be determined by requiring that the spring constant

against rotation of plate AB along B is equal and opposite to that of W
along B. Spring constants for these cases or rather the specific aagle
rotations were derived in reference 49, where they are given by equa-
tions (~), (52), (53), and (54). The same results were obtained in
reference 50 and sre presented in tables in reference 51, where the

stiffnesses Sm and SN are the quarter spring constants referring
to the present plates AB and BC in B. Hence, ~ is determined by the

condition S1l = -Sm. It appesrs that the minimum value of k2 occurs

for ~ = a/b = 0.72 and is equalto 6.15. From equation (6.4.1) of
reference 25 this minimum is

(%)min=p
Inserting the value 6.15 into equation

+2@ (Al)

(Al) and kp = 6.935, obtained for
B = 1, into equation (203), one obtatis p = 2.36 ‘and q= 3.58.

For n= 4.- In the case of n = 4, (fig. 23(c)), from symmetry
plate BC can be considered as clamped at edge C so that, with the nota-
tions of reference 51, the condition at B is S~ = -S, yielding a
minimum value of ~ = 6.47 and, for 13= 0.9, k2 = 7.00. From equa-

tions (Al) and (203) this results in values of p = 2.37 and q = 4.20.

For n = m.- For the case of n = m all plates can be assumed to
be clamped at both edges (fig. 23(d)) so that, from reference 25, p = 2.5
and q=5. Values of p and q are assembled in table 2.
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Computation of 79

From equations (211), (193)) and (205))

7
‘al=—
WM

mom equation (193)I

Y
1
=Wbsi+

while from ecpation (624) of reference 25 for
general,

(A2)

(A3)

(Ak)

the plates considered, b

‘2
= c1 cosh aly + C2 sinh ~Y + C3 cos a~ + C4 sin a# (A5)

where

[ 1

l/2

*A2 + x(ta/N)
1/2

%’U2 =

while X is given by equation (194).

(A6)

For n = 2.-
of simple support
equation (A5)

Considering plate AB in figure 23(a), the conditions
at y = O require that cl = C3 = o so that from

Y2 = C2 sin aly + C4 sin a~ (A7)

At y=b, Y2 = o so that from equation (A7)

(A8)
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From table 26 of reference 25 the buckling coefficient k for plate AB
in figure 23(a) (one

. occurring for a half

Hence, from equation

and ~ = 1.165fi/b.

edge, S-&ply support~dj the other, ftxed) % s.k2,
wave length a = Bb = 0.8b so that in eqyation (A6)

ta/N =lm2/1)2= 5.@#jb2

(A6), with A = fi/O.8b,one obtains al = 2.12K/b

Inserting this into equations (A7) and

Y2. C2~inh(2.12bqy/b) +790 sin(l.165my/b)]

Denoting the deflection at y = b/2 as w~, this becomes

.- —
Y2 = ~~inh (2.12zy/b) + 790 Eti (1.16%ry/b)l

779

From eq-tions (A4) and (A9) one obtains

I
b
Y22 dy = 0.k71bww2

o

J
b

Y1Y2 dy = 0.366bwhw~
o

(A8)

(A9)

Hence, from equations (A2) end (A3) q = 0.732, 7 .0.778, ~d
7T = 0.57.

For n = ~.- It is sufficiently accurate to calculate ~ ad 7
for n = 2andn=w only and to derive from these values the values
of ~ and 7 for intermediate n values. For infinite values of n
(fig. 22(b))

Y~ . Wh = Constsat

Worn symetry (fig. 23(d)) equation (A5) transforms

Y2 ‘ Cl cosh~y+ C3 COS a~

(A1O)

to

(All}
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Aty= b/2, Y2 = O so that from equation (All)
.

C5 = -cl

From table 26 of reference 25 the
for ~ = &/b = 0.668, from which,
one obtains

%=

‘2 =

cosh(~b 2)

+ (
COS ~b/2

(Au) “

buckling coefficient k = 6.97 occurs
in a ~ shilsr to that for n = 2“j”

2.488@

1.303Jf/b

= ~~Od2.~b/d + 54D5 COS(103033w/b)]~2 .

Hence, from equations (AIO) and (A13)

(A13)

o.5bwh2

J- Y2~ dy = o.2065bwa2
o

J
b/2

J

b/2
Y1Y2 dy = w= Y2dy= o.27bwdwa

o 0

so that from equations (A2) and (A3) ~ = 0.54, y = 1.31, and y~ = 0.707.

For n = 3.- It is sufficiently accurate to consider the angle
rotations at B and C (fig. 23(b)) to be zero so that the two outer
Plates AB and CD for n = 3 are similar to the Plates for n = 2
(fig. 23(a) =d the center-plate is similar to those for
of n (fig. 23(d)). Hence, as an average value

m =; (0.57+0.707+0.57) =0.616

infinite values

.
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For n = 4.- Assuming the angle rotations at B, C, and D to be zero
(fig.~ne obtains, for n =4,

~=3(0,57+0.707) =0.639

Values of w are assembled in table 2.

.
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TABLE 1.- COMPARISON OF RESULTS FRCM EQUATIONS (46) AND (48)

~ = (L!q/r)/(w
2, c, ~ h,

cm o -v= 4 x 10-~ ‘l@g v=30xlo- 5 ‘n@cm cm -v=

Eq. (~) Eq. (~) Eq. (46) Eq. (k8) Eq. (~) Eq..(’~)

260 130 2 16 1.11 1.09 1.45 1.37 1.84 1.80
390 130 3 16 1.27 1.24 1.70 1.63 2.4T 2.k2
520 130 4 16 1.47 1.43 1.90 1.85 2.94 2*89
520 130 4 2k 1.24 1.21 1.51 1.46 2.39 2.33
780 130 6 16 1.92 1*89 2.30 2.26 3.56 3.!53
156 78 2 16 1.12 1.w 1.56 1.48 1.89 1-89
390 78 5 16 1.69 1.65 2.30 2;26 3.68 3*66
78a 78 10 16 2.94 2.91 3.37 3.34 5-09 5.0’9

TABLE 2.- VALUES p AND q IN EQUATION (203)

AND yq FROM EQUATIONS (211) AND (221)

n P ~ 79

2 2.27 2.45 0.570

3 2.36 3.58 .616

4 2.37 4.20 .639

w 2.5 5 .707



TABLE 3.- COMPARISON OF FW3ULTS FRCM EQUATION (224) WITH THOSE FROM REFERENCE 47

n. . . . .

E1/(bN) . .

6 . . . . .

kw from

eq. (224)

k~r from

ref. 47 .
I

.25 (1.28) 4.2> 2.79 1.13 4.25 2.66 3.fm 0.71
1-

.—
I

. ‘



NACA TN 4083 83

g 1. &
.— .— .— -—. —-— -

3,
z~

d

1//////////////////////////////

Figure l.- Replacement of bending and shearing rigidity of sandwich
column by equivalent spring systems.

Figure 2.- Long rectangular sandwich plate ccxupressedin X-direction with
various boundary conditions at loaded and unloaded edges.

.
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Figure 3.- Longitudinal
tion in case

section of sandwich plate with buckling deflec-
2 (shear deformation of case only).

?

(a)

Figure 4.- Spring

(b)

systems.

.
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(a) S@ly supported case.

L

(b) Clamped at both ends.

(c) Clamped simply supported case.

Figure 5.- Sandwich columns.
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(a) Separate case 1.

,
L-.

(b) Composite case.

Figure 6.- Clamped simply supported sandwich column.

.

.
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(a) columns (b) Case 1. (c) Case 2. (d) Case 3.
connected by
batten plates
with equal
spacings.

Figure 7.- Colmms with batten plates.
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Figure 8.- Equivalent laterally
supporting spring system for
column with batten plates.

(a) Coupled by (b) Coupled by
diagonals. diagoqals and

verticals.

Figure 9.- Latticed colunms.
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Plan and cross section.

Figure 10.- Long sandwich plate compressed in X-direction and clamped
at unloaded edges.
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Figure 11.- Long sandwich plate with
isotropic faces and an orthotropic
core compressed in X-direction
with arbitrsry boundary conditions
at unloaded edges.
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Figure 12.- Equivalent
systems.

$c
spring

@?Y l~lk?x’~d+’’””

!- -1
I

Figure 13.-

dx I

Restraining forces exerted
by X-strip.

zIzE -w
Figure 14.- Cross section of

corrugated sandwich plate.

Figure 16.- Buckling of 10Ilg
simply supported flange under
linearly distributed stresses
that increase with y.

Figure 15.- Deflections of Y-strips
for clamped plates.

I<
1

Figure 17.-

7?( 6

— -1

Buckling of long sirrrply
supported flange under linearly
distributed stresses that decrease
with increasing y.
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Figure 18.- Distribution of total
direct stresses ox and ay

in postbuckling range.

NACA TN 4085
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Figure 19. - plot Of cultl~cr
/

as function of au cry=.
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(a) Total deflection.

(b) Deflection for case 1.

(c) Deflection for case 2.

Figure 20.- Deflection of cross section of I-section.

*
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●
Figure 21. - Stringer panels supported by stiffeners

and located at equal distances.
of equal cross section



96 NACA TN 4085

●

u

(a) Longitudinal section
through center of
buckle.

A--l

(b) Cross section through center
of buckle.

CASE 1

(c) Cross section with deflection in case 1.

WE 2

(d)

Figure

Cross section

22.- Buckling

with deflection in case 2.

deflection of stringer panel.

.

.
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(a) n = 2.

(b) n = 3.

A B c D f?

I

(c) n = 4.

(d) n = M.

Figure 23.- Sketches used in compuwtion of P, q; and 7P.

NACA - Langley NoM, Va.


